These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: miR-666-3p Mediates the Protective Effects of Mesenchymal Stem Cell-derived Exosomes Against Oxygen-glucose Deprivation and Reoxygenation- induced Cell Injury in Brain Microvascular Endothelial Cells via Mitogen-activated Protein Kinase Pathway.
    Author: Kong LY, Li Y, Rao DY, Wu B, Sang CP, Lai P, Ye JS, Zhang ZX, Du ZM, Yu JJ, Gu L, Xie FC, Liu ZY, Tang ZX.
    Journal: Curr Neurovasc Res; 2021; 18(1):20-77. PubMed ID: 33745435.
    Abstract:
    BACKGROUND: Previous studies have reported that mesenchymal stem cell (MSC)- derived exosomes can protect primary rat brain microvascular endothelial cells (BMECs) against oxygen-glucose deprivation and reoxygenation (OGD/R)-induced injury. OBJECTIVE: The aim was to identify the key factors mediating the protective effects of MSC-derived exosomes. METHODS: Primary rat BMECs were either pretreated or not pretreated with MSC-derived exosomes before exposure to OGD/R. Naïve cells were used as a control. After performing small RNA deep sequencing, quantitative reverse transcription polymerase chain reaction was performed to validate microRNA (miRNA) expression. The effects of rno-miR-666-3p on cell viability, apoptosis, and inflammation in OGD/R-exposed cells were assessed by performing the Cell Counting Kit 8 assay, flow cytometry, and enzyme-linked immunosorbent assay, respectively. Moreover, the role of rno-miR-666-3p in regulating gene expression in OGD/R-exposed cells was studied using mRNA deep sequencing. Lastly, to evaluate whether mitogen-activated protein kinase 1 (MAPK1) was the target of rno-miR-666-3p, western blotting and the dual-luciferase assay were performed. RESULTS: MSC-derived exosomes altered the miRNA expression patterns in OGD/R-exposed BMECs. In particular, the expression levels of rno-miR-666-3p, rno-miR-92a-2-5p, and rnomiR- 219a-2-3p decreased in OGD/R-exposed cells compared with those in the control; however, MSC-derived exosomes restored the expression levels of these miRNAs under OGD/R conditions. rno-miR-666-3p overexpression enhanced cell viability and alleviated the apoptosis of OGD/R-exposed cells. Moreover, rno-miR-666-3p suppressed OGD/R-induced inflammation. mRNA deep sequencing revealed that rno-miR-666-3p is closely associated with the MAPK signaling pathway. Western blotting and the dual-luciferase assay confirmed that MAPK1 is the target of rnomiR- 666-3p. CONCLUSION: MSC-derived exosomes restore rno-miR-666-3p expression in OGD/R-exposed BMECs. Moreover, this specific miRNA exerts protective effects against OGD/R by suppressing the MAPK signaling pathway.
    [Abstract] [Full Text] [Related] [New Search]