These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations.
    Author: Alcolado R, Weller RO, Parrish EP, Garrod D.
    Journal: Neuropathol Appl Neurobiol; 1988; 14(1):1-17. PubMed ID: 3374751.
    Abstract:
    The objects of the present study were: (1) to define the relationships of the arachnoid mater to blood vessels in the subarachnoid space; (2) to establish the structure of leptomeningeal trabeculae and their relationships to the pia mater; and (3) to investigate the fine structure of the human pia mater. Intracranial portions of vertebral artery were taken at post mortem, and normal cerebral cortex and overlying leptomeninges were obtained from surgical lobectomies. Tissue from these specimens was examined by scanning and transmission electron microscopy, by light microscopy and by immunocytochemistry for the presence of basement membrane, desmosomal proteins and vimentin. Results of the study showed that as the vertebral artery pierced the posterior atlanto-occipital membrane and entered the subarachnoid space, it acquired a leptomeningeal coat as the arachnoid was reflected on to it. It has been demonstrated previously that as vessels enter the brain, the leptomeningeal coat is reflected on to the surface of the cortex as the pia mater. The arachnoid mater was seen to consist of a subdural mesothelial layer and a compact central layer as previously reported. From the inner layer of the arachnoid, collagen bundles coated by leptomeningeal cells extended as trabeculae across the subarachnoid space to fuse with the pia mater. The pia itself was composed of a delicate but apparently continuous layer of cells joined by desmosomes and gap junctions but no tight junctions were observed. It was possible to detect pia mater cells in the perivascular spaces of the brain by immunocytochemical techniques using light microscopy. The significance of the observed anatomical arrangement for cerebrospinal fluid physiology is discussed.
    [Abstract] [Full Text] [Related] [New Search]