These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Involvement of miR-337 in high glucose-suppressed osteogenic differentiation in bone marrow mesenchymal stem cells via negative regulation of Rap1A. Author: Liu S, Yang X, Zhong X, Li L, Zhang X. Journal: In Vitro Cell Dev Biol Anim; 2021 Mar; 57(3):350-358. PubMed ID: 33748908. Abstract: This study aims to investigate the inhibitory effect of microRNA-337 (miR-337) on osteogenic differentiation in bone marrow mesenchymal stem cells and its action of mechanisms. Overexpression and knockdown of miR-337 were performed in bone marrow mesenchymal stem cells (BMSCs). Cell proliferation was assessed by using a cell counting kit-8 (CCK-8), mineralization assay was performed by alizarin red staining, and alkaline phosphatase activity was then measured. Luciferase reporter assay was applied to verify miR-337 binding to Ras-related protein 1A (Rap1A) mRNA. Reverse transcription and quantitative polymerase chain reaction (RT-qPCR) was applied to measure the expressions of runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN), bone morphogenetic protein (BMP2), and miR-337. Then the protein level of Rap1A was determined by western blot analysis. High glucose inhibited osteogenic differentiation but increased the level of miR-337. Overexpression of miR-337 inhibited osteogenic differentiation in high glucose-treated BMSCs, while the knockdown of miR-337 reversed this process. Luciferase reporter assay confirmed that the presumed pairing binding site of miRNA-337 was in the 3'-UTR of the Rap1A WT. In addition, the knockdown of Rap1A distinctly repressed osteogenic differentiation, which blocked the effect of miR-337-knockdown on osteogenic differentiation in high glucose-treated BMSCs. MiR-337 could repress osteogenic differentiation in high glucose-treated BMSCs directly targeting Rap1A, thus provide a potential therapeutic strategy for patients with diabetic osteoporosis in clinic.[Abstract] [Full Text] [Related] [New Search]