These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Improved AP-3 production through combined ARTP mutagenesis, fermentation optimization, and subsequent genome shuffling.
    Author: Li J, Guo S, Hua Q, Hu F.
    Journal: Biotechnol Lett; 2021 Jun; 43(6):1143-1154. PubMed ID: 33751317.
    Abstract:
    Ansamitocin (AP-3) is an ansamycins antibiotic isolated from Actinosynnema pretiosum and demonstrating high anti-tumor activity. To improve AP-3 production, the A. pretiosum ATCC 31565 strain was treated with atmospheric and room temperature plasma (ARTP). Four stable mutants were obtained by ARTP, of which the A. pretiosum L-40 mutant produced 242.9 mg/L AP-3, representing a 22.5% increase compared to the original wild type strain. With seed medium optimization, AP-3 production of mutant L-40 reached 307.8 mg/L; qRT-PCR analysis revealed that AP-3 biosynthesis-related gene expression was significantly up-regulated under optimized conditions. To further improve the AP-3 production, genome shuffling (GS) technology was used on the four A. pretiosum mutants by ARTP. After three rounds of GS combined with high-throughput screening, the genetically stable recombinant strain G3-96 was obtained. The production of AP-3 in the G3-96 strain was 410.1 mg/L in shake flask cultures, which was 44.5% higher than the L-40 production from the parental strain, and AP-3 was increased by 93.8% compared to the wild-type A. pretiosum. These results suggest that the combination of mutagenesis, seed medium optimization, and GS technology can effectively improve the AP-3 production capacity of A. pretiosum and provide an enabling methodology for AP-3 industrial production.
    [Abstract] [Full Text] [Related] [New Search]