These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characteristics and environmental driving factors of water transformation in the Balaguer River watershed of Inner Mongolia steppe. Author: Fang LJ, Gao RZ, Jia DB, Yu RH, Liu XY, Liu TX, Wang XX. Journal: Ying Yong Sheng Tai Xue Bao; 2021 Mar; 32(3):860-868. PubMed ID: 33754551. Abstract: Inner Mongolian steppe is one of the ecological barriers in China. The variation of water resources is very important for the development of social-economy and the protection of eco-environment. We collected 254 water samples of precipitation, river, and shadow groundwater during wet-season and dry-season of 2018-2019 from Balaguer River watershed and meansured the physical-chemical indicators, δD and δ18O of water samples. The stable isotope technology, mathematical statistics, and the inverse distance weighting method were used to analyze the stable isotope composition, spatial-temporal variation, and impact factors. Moreover, the d-excess and the isotopic mixing ratio formula were used to analyze the conversion characteristics of different water and to identify their environment driving variables. The results showed that δD and δ18O of precipitation, river and shallow groundwater were higher in wet season than in dry season. The driving factors of different water transformation in the watershed were air temperature, altitude, and groundwater depth. Altitude was significantly negatively correlated with river δD, and the δD and δ18O of groundwater. δD and δ18O of groundwater fluctuated significantly in the area with groundwater depth less than 10 m, but were stable in other areas. There was a positive correlation between precipitation δ18O and air temperature. The d-excess in wet season was higher than that in dry season, with a decreasing distribution characteristic from southern to northern part in the study area. More than 50% river in upper stream came from precipitation, while more than half river water converted to groundwater, with different recharge-drainage relationships existed between surface water and groundwater in different river reaches. 内蒙古高原草原流域是我国内陆重要的生态屏障,水资源演化对该区域社会经济发展和生态环境保护具有重要意义。本研究选取巴拉格尔河流域为对象,于2018—2019年丰、枯水期采集降水、河水、浅层地下水共254份水样,测定其物理化学指标、δD和δ18O,运用同位素技术、数理统计和反距离权重法分析不同水体中稳定同位素的组成关系、时空变化及其影响因子,并结合氘盈余(d-excess)及同位素混合比公式,揭示不同水体的转换关系,识别其演化的环境驱动因素。结果表明: 研究期间,大气降水、河水、浅层地下水呈现δD、δ18O丰水期高、枯水期低的特征;草原流域不同水体时空转化的主要环境驱动因素为温度、海拔和地下水埋深,地下水δD、δ18O、河水δD与海拔均呈显著负相关;浅层地下水埋深小于10 m时,δD、δ18O变化大,大于10 m时则趋于稳定;大气降水的δ18O与气温呈正相关;丰水期氘盈余值高于枯水期,分布特征存在局部高值,流域自南向北呈减小趋势;丰水期降水对上游河水的补给率超过50%,河水对地下水的补给均在50%以上,在不同河段地表水与地下水的补排关系不同。.[Abstract] [Full Text] [Related] [New Search]