These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Natural abundance of 13 C and 15 N provides evidence for plant-soil carbon and nitrogen dynamics in a N-fertilized meadow.
    Author: Wang R, Peñuelas J, Li T, Liu H, Wu H, Zhang Y, Sardans J, Jiang Y.
    Journal: Ecology; 2021 Jun; 102(6):e03348. PubMed ID: 33755986.
    Abstract:
    Natural abundance of carbon (C) and nitrogen (N) stable isotope ratios (δ13 C and δ15 N) has been used to indicate ecosystem C and N status and cycling; however, use of this approach to infer plant and microbial N preference under projected ecosystem N enrichment is limited. Here, we investigated natural abundance δ13 C and δ15 N of five dominant plant species, and soil δ15 N of microbial biomass and available N forms under N addition in a meadow steppe. Additional N, applied as urea, led to decreases in δ15 N of soil NO3-15 Nnitrate , from 3.0 to 0.4‰) and increases in δ15 N of soil NH4+15 Nammonium , from -1.3 to 11‰) and dissolved organic N (δ15 NDON , from 8.5 to 15‰) that reflected increased net nitrification rates, a possible increase in NH3 volatilization, and greater availability of the three N forms. An overall increase in δ15 N of soil total N (δ15 NTN ) from 7.1 to 7.9‰ indicated accelerated and greater openness of soil N cycling that was also partially revealed by enhanced net N mineralization rates. Plant δ15 N, which ranged from -1.8 to 2.1‰, generally decreased with N addition, indicating a greater reliance on soil NO3- under N-enrichment conditions. Nitrogen addition decreased δ15 N of microbial biomass N (from 14 to 2.8‰), possibly because of a shift in preferential N form (DON to NO3- ), that indicated a convergence of plant and microbial preferential N forms and an increase in plant-microbial N competition. Microbes were thus more flexible than plants in the use of different forms of N. Addition of N decreased plant litter δ13 C, whereas plant species δ13 C remained unaffected, likely because of a shift in the abundance of dominant species with a greater proportion of biomass coming from δ13 C-depleted species. Enrichment factor (the difference in plant δ15 N relative to δ15 NTN ) of four nonlegume species was negatively related to soil inorganic N availability, net nitrification rate, and net N mineralization rate, and was proven to be a good indicator of ecosystem N status. Our study highlights the importance of natural abundance of 15 N as an indicator of plant-microbial N competition and ecosystem N cycling in meadow steppe grasslands under projected ecosystem N enrichment.
    [Abstract] [Full Text] [Related] [New Search]