These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Variation in PM2.5 sources in central North China Plain during 2017-2019: Response to mitigation strategies.
    Author: Li J, Wu Y, Ren L, Wang W, Tao J, Gao Y, Li G, Yang X, Han Z, Zhang R.
    Journal: J Environ Manage; 2021 Jun 15; 288():112370. PubMed ID: 33761332.
    Abstract:
    Central North China Plain (NCP) is one of the most important source region of air pollutants over the Beijing-Tianjin-Hebei (BTH) region. The national government has issued abatement measures to improve the air quality in this area from 2017. To examine the effects of control measures, observational analysis on PM2.5 characteristics was performed in a city of central NCP during 2017-2019 to investigate the variation in mass concentration, chemical composition, and emission source of PM2.5. Annual PM2.5 concentration significantly reduced by 16% from 2017 to 2019, implying substantial improvements in air quality. PM2.5 enriched in autumn-winter seasons was dominated by SNA (sum of sulfate, nitrate and ammonium; ~38%), followed by organic carbon matters (OM; ~24%) and fine soil (FS; ~12%). This chemical composition was different from that in a megacity in NCP (Beijing) where OM accounted for a comparable fraction to SNA. Approximately half of SNA was attributed to nitrate, indicating that SNA changed from sulfate-driven to nitrate-driven, and the considerable effects of coal combustion cutoff, in which sulfate was concentrated. Decreased mass fraction of SNA and increased OM fraction in PM2.5 were observed in 2018-2019 partly contributed to the decrease in PM2.5. A progressive increase in the contribution of heterogeneous formed SNA whilst a decrease in OM was observed as the pollution elevated from clean to heavily polluted. Six sources (soil dust, biomass burning, secondary emission, road traffic, coal combustion and industry) were identified by the Positive Matrix Factorization (PMF) model in both years and dominated by secondary aerosols, respectively contributing 39% and 41% to PM2.5. The decreasing concentrations (with reductions of 17%-61%) of the secondary source, coal combustion, soil dust and biomass burning largely accounted for the reduction in PM2.5, as a consequence of the recent abatement measures. By contrast, contributions of vehicle-related emissions, similar to the increasing contribution of vehicles at sites in NCP after 2013, should receive increased attention.
    [Abstract] [Full Text] [Related] [New Search]