These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparative transcriptome analysis of different developmental stage of Bactrocera minax (Diptera: Tephritidae): Implication of the molecular basis of its obligatory diapause induction.
    Author: Zhou ZX, Dong XL, Li CR.
    Journal: Comp Biochem Physiol Part D Genomics Proteomics; 2021 Jun; 38():100818. PubMed ID: 33773478.
    Abstract:
    The Chinese citrus fruit fly, Bactrocera minax (Enderlein), a devastating pest in citrus, has an obligatory diapause at the pupal stage. Although the physiology of obligatory diapause has been well described, the molecular mechanisms underlying the process remain unknow. Here we investigated the molecular mechanisms of obligatory diapause induction in B. minax using high-throughput RNA-Seq data from second-instar larva (2L), third-instar larva (3L) and pupa (P) stages. A total of 116,402 unigenes were obtained, of which 54,781 unigenes were successfully annotated in public databases, and the differentially expressed genes in the 3L vs 2L, P vs 2L, and P vs 3L comparisons were identified. The cluster co-expression patterns of the differentially expressed genes revealed that significantly differentially-expressed genes in the pupal stage were predicted to be related to diapause induction. All differentially expressed genes were investigated by GO functional and KEGG pathway analysis, and the results showed that genes involved in processes such as 20-hydroxyecdysone (20E) biosynthesis, cell cycle and metabolic pathways are likely related to obligatory diapause induction in B. minax. These results provide important information on the transcriptome of the Chinese citrus fruit fly that can be used for further functional studies as well as contributing to our understanding of the molecular basis of obligatory diapause induction and suggesting potential molecular targets for the control of this pest.
    [Abstract] [Full Text] [Related] [New Search]