These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ag3PO4 NP@MoS2 nanosheet enhanced F, S-doped BN quantum dot electrochemiluminescence biosensor for K-ras tumor gene detection. Author: Guo Y, Nie Y, Liang Z, Peilin W, Ma Q. Journal: Talanta; 2021 Jun 01; 228():122221. PubMed ID: 33773727. Abstract: In this research, a novel Ag3PO4 NPs@MoS2 nanosheet-based electrochemiluminescence (ECL) sensing system was developed to provide an effective method for tumor gene detection. At first, fluorine, sulfur-doped BN quantum dot (F, S-BN QD) were prepared as ECL emitter. Sulfur dopant can provide more reactive sites in the ECL reaction. Fluorine atoms in the QD structure further improved the stability of the crystal. Furthermore, Ag3PO4 NP@MoS2 nanosheets were fabricated via a hydrothermal route as ECL reaction catalyst. On the one hand, Ag3PO4 NP@MoS2 nanosheets promoted the generation of more oxidant of coreactant in the F, S-BN QD/H2O2 coreactant ECL pathway. On the other hand, the excellent conductivity of Ag3PO4 NP@MoS2 nanosheets facilitated the electron transfer and effectively reduce the damage of F, S-BN QD by excessive hot electrons. Finally, the proposed biosensor was designed to accurately quantify K-ras tumor gene from 10 fM to 100 pM with a limit of detection (LOD) of 0.2 fM. The sensing system was used to detect K-ras gene in human colorectal cancer tumor and tumor-adjacent tissues samples with satisfactory results. The amplified ECL sensing strategy with Ag3PO4 NPs@MoS2 nanosheet has significant potential value in the clinical detection.[Abstract] [Full Text] [Related] [New Search]