These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Kinetics of fluorescent-labeled phosphatidylcholine transfer between nonspecific lipid transfer protein and phospholipid vesicles.
    Author: Nichols JW.
    Journal: Biochemistry; 1988 Mar 22; 27(6):1889-96. PubMed ID: 3378037.
    Abstract:
    Recently, rat liver nonspecific lipid transfer protein (nsLTP) was shown to form a fluorescent complex when allowed to equilibrate with self-quenching vesicles prepared from the fluorescent phospholipid 1-palmitoyl-2-[12-[(7-nitro-2,1,3-benzoxadiazol-4- yl)amino]dodecanoyl]phosphatidylcholine (P-C12-NBD-PC) [Nichols, J. W. (1987) J. Biol. Chem. 262, 14172-14177]. Investigation of the mechanism of complex formation was continued by studying the kinetics of transfer of P-C12-NBD-PC between nsLTP and phospholipid vesicles using a transfer assay based on resonance energy transfer between P-C12-NBD-PC and N-(lissamine rhodamine B sulfonyl)dioleoylphosphatidylethanolamine. The principles of mass action kinetics (which predict initial lipid transfer rates as a function of protein and vesicle concentration) were used to derive equations for two distinct mechanisms: lipid transfer by the diffusion of monomers through the aqueous phase and lipid transfer during nsLTP-membrane collisions. The results of these kinetics studies indicated that the model for neither mechanism alone adequately predicted the initial rates of formation and dissolution of the P-C12-NBD-PC-nsLTP complex. The initial rate kinetics for both processes were predicted best by a model in which monomer diffusion and collision-dependent transfer occur simultaneously. These data support the hypothesis that the phospholipid-nsLTP complex functions as an intermediate in the transfer of phospholipids between membranes.
    [Abstract] [Full Text] [Related] [New Search]