These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ruxolitinib attenuates experimental autoimmune encephalomyelitis (EAE) development as animal models of multiple sclerosis (MS).
    Author: Hosseini A, Gharibi T, Mohammadzadeh A, Ebrahimi-Kalan A, Jadidi-Niaragh F, Babaloo Z, Shanehbandi D, Baghbani E, Baradaran B.
    Journal: Life Sci; 2021 Jul 01; 276():119395. PubMed ID: 33781828.
    Abstract:
    AIMS: STAT3 signaling is critical for Th17 development that plays an important role in multiple sclerosis pathogenesis. To evaluate the anti-inflammatory and regulatory T cells effects of JAK1/2 and STAT3 inhibition, we assessed the JAK 1/2 inhibitor ruxolitinib effects on Th17 cell/Tregs balance. MAIN METHODS: Ruxolitinib was administered to experimental autoimmune encephalomyelitis (EAE) mice via oral gavage, and its effects were assessed. The expression of pro-inflammatory and anti-inflammatory cytokines, including IL-17A and IL-10, were analyzed by real-time PCR. The frequency of Th17 cells and Tregs were evaluated by flow cytometry. KEY FINDING: Ruxolitinib ameliorated the EAE severity and decreased the proportion of Th17 cells and inflammatory markers levels. In contrast, the balance of Tregs and the level of anti-inflammatory cytokine were increased in ruxolitinib-treated mice. Furthermore, ruxolitinib markedly decreased the expression of Th17 related transcription factor, RORɣt, whereas FOXP3 expression associated with Treg differentiation was increased. SIGNIFICANCE: Our results show that ruxolitinib may be a promising therapeutic strategy for multiple sclerosis.
    [Abstract] [Full Text] [Related] [New Search]