These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: OPA Interacting Protein 5 Antisense RNA 1 Expedites Cell Migration and Invasion Through FOXM1/ Wnt/β-Catenin Pathway in Pancreatic Cancer.
    Author: Shi C, Zhang H, Wang M, Tian R, Li X, Feng Y, Peng F, Qin R.
    Journal: Dig Dis Sci; 2022 Mar; 67(3):915-924. PubMed ID: 33782807.
    Abstract:
    BACKGROUND: Pancreatic cancer (PC) is a digestive tract malignancy with poor prognosis. Long noncoding RNA (lncRNA) OPA interacting protein 5 antisense RNA 1 (OIP5-AS1) was regarded to be correlated with human malignancy, working as tumor suppressor or promoter on the basis of tumor types. However, the function of OIP5-AS1 in PC remained unclear. AIMS: The study focused on the function and regulatory mechanism of OIP5-AS1 in PC. METHODS: OIP5-AS1 expression was assessed by the quantitative reverse transcription PCR (RT-qPCR) in tumor tissues and PC cell lines. 5-ethynyl-2'-deoxyuridine (EdU) incorporation and cell counting kit-8 (CCK-8) assays were applied to detect cell proliferation ability. Through wound healing and transwell assays, cell migration and invasion capacities were estimated. Flow cytometry analysis was performed to examine apoptosis capability of PC cells. RESULTS: OIP5-AS1 downregulating inhibited cell proliferation, migration, and invasion capacities, while promoting cell apoptosis rates. As a competing endogenous RNA (ceRNA), OIP5-AS1 competed with Forkhead Box M1 (FOXM1) for the binding sites on microRNA-320b (miR-320b). OIP5-AS1 was able to upregulate FOXM1 expression via silencing miR-320b. Furthermore, FOXM1 served as an activator of Wnt/β-catenin pathway and mediated the effect of OIP5-AS1 on Wnt/β-catenin pathway. CONCLUSION: OIP5-AS1 expedites the proliferative, migrated, and invasive capability of PC cells, while repressing cell apoptosis through regulating miRNA-320b/FOXM1 axis and FOXM1/Wnt/β-catenin pathway in PC. OIP5-AS1 regulation on FOXM1/Wnt/β-catenin pathway may offer novel efficient markers for PC treatments.
    [Abstract] [Full Text] [Related] [New Search]