These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Micro-RNA miR-542-3p suppresses decidualization by targeting ILK pathways in human endometrial stromal cells. Author: Qu X, Fang Y, Zhuang S, Zhang Y. Journal: Sci Rep; 2021 Mar 30; 11(1):7186. PubMed ID: 33785768. Abstract: Decidualization of human endometrial stromal cells (HESCs) is a vital step for successful pregnancy. However, the process by which micro-RNAs (miRNAs) regulate decidualization remains elusive. Our current study was designed to identify the mechanism of miRNA miR-542-3p and its potential targets in regulating decidualization. The results showed that miR-542-3p was down-regulated in HESCs. Luciferase assay confirmed that integrin-linked kinase (ILK) is a direct target of miR-542-3p. Overexpression of miR-542-3p resulted in decreased ILK and downstream transforming growth factor β1 (TGF-β1) and SMAD family member 2 (SMAD2) expression. Additional expression of ILK attenuates the miR542-3p-induced down-regulation of TGF-β1 and SMAD2, changes properties such as suppression of proliferation and invasion, and induction of apoptosis, thereby affecting the differentiation of HESCs. Moreover, miR-542-3p overexpression caused down-regulation of the angiogenic factors vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9), and the supernatant of HESCs overexpressing miR-542-3p inhibited the formation of tubular structures in human umbilical vein endothelial cells (HUVECs), suggesting that miR-542-3p inhibits angiogenesis of HUVECs. Furthermore, in our mouse model, following injection of miR-542-3p mimic into the endometrium of mice at pregnancy day 8 (D8), we found decreased miR-542-3p expression and loss of embryo implantation sites. In conclusion, miR-542-3p can affect the process of endometrial decidualization by down-regulating ILK. The present study adds further understanding of the process and regulation of decidualization.[Abstract] [Full Text] [Related] [New Search]