These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Autophagy Induction by α-Santalol in Human Prostate Cancer Cells.
    Author: Walters C, Reed M, Bartholomew S, Bommareddy A.
    Journal: Anticancer Res; 2021 Mar; 41(3):1197-1202. PubMed ID: 33788710.
    Abstract:
    BACKGROUND/AIM: Previous studies have shown that the sandalwood oil constituent α-santalol inhibits growth of cultured human prostate cancer cells in vitro and PC-3 prostate cancer xenografts. Along with the studies from our laboratory, it is well established that α-santalol targets the phosphatidylinositol-4,5-bisphosphate 3-kinase-AKT serine/ threonine kinase 1 (AKT) pathway to induce apoptosis but its growth-suppressive effects have not been fully elucidated. The current study was undertaken to investigate the role of autophagy in α-santalol-induced prostate cancer cell death. MATERIALS AND METHODS: Cell lines LNCaP and PC-3 were maintained in an atmosphere of 95% air and 5% CO2 at 37°C. Trypan blue dye exclusion assay was employed to assess the effects of α-santalol with/without 3-methyl adenine on the cell viability of prostate cancer cells. Acidic vesicular organelles induced by α-santalol treatment were detected by staining with acridine orange. Immunofluorescence and immunoblotting were performed to analyze expression of proteins involved in the AKT-mammalian target of rapamycin (mTOR) pathway. RESULTS: LNCaP and PC-3 cells upon treatment with α-santalol resulted in characteristic features analogous to autophagic response, including formation of acidic vesicular organelles, recruitment and cleavage of microtubule-associated protein 1 light chain 3 (LC3) to autophagosomes. Alpha-santalol treatment further suppressed phosphorylation of activated AKT and mTOR, which are critical regulators of autophagic response. In addition, pre-treatment of PC-3 cells with specific inhibitor of autophagy (3-methyladenine) and co-treatment with α-santalol attenuated the expression of LC3-II and phospho-AKT, and significantly reduced the cell viability. CONCLUSION: The present study indicates that α-santalol induces autophagy by targeting the AKT-mTOR pathway in prostate cancer cells, which may serve as a protective mechanism.
    [Abstract] [Full Text] [Related] [New Search]