These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Photosynthesis acclimation under severely fluctuating light conditions allows faster growth of diatoms compared with dinoflagellates.
    Author: Zhou L, Wu S, Gu W, Wang L, Wang J, Gao S, Wang G.
    Journal: BMC Plant Biol; 2021 Apr 01; 21(1):164. PubMed ID: 33794787.
    Abstract:
    BACKGROUND: Diatoms contribute 20% of the global primary production and are adaptable in dynamic environments. Diatoms always bloom earlier in the annual phytoplankton succession instead of dinoflagellates. However, how diatoms acclimate to a dynamic environment, especially under changing light conditions, remains unclear. RESULTS: We compared the growth and photosynthesis under fluctuating light conditions of red tide diatom Skeletonema costatum, red tide dinoflagellate Amphidinium carterae, Prorocentrum donghaiense, Karenia mikimotoi, model diatom Phaeodactylum tricornutum, Thalassiosira pseudonana and model dinoflagellate Dinophycae Symbiodinium. Diatoms grew faster and maintained a consistently higher level of photosynthesis. Diatoms were sensitive to the specific inhibitor of Proton Gradient Regulation 5 (PGR5) depending photosynthetic electron flow, which is a crucial mechanism to protect their photosynthetic apparatus under fluctuating light. In contrast, the dinoflagellates were not sensitive to this inhibitor. Therefore, we investigate how PGR5 functions under light fluctuations in the model diatom P. tricornutum by knocking down and overexpressing PGR5. Overexpression of PGR5 reduced the photosystem I acceptor side limitation (Y (NA)) and increased growth rate under severely fluctuating light in contrast to the knockdown of PGR5. CONCLUSION: Diatoms acclimatize to fluctuating light conditions better than dinoflagellates. PGR5 in diatoms can regulate their photosynthetic electron flow and accelerate their growth under severe light fluctuation, supporting fast biomass accumulation under dynamic environments in pioneer blooms.
    [Abstract] [Full Text] [Related] [New Search]