These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mononuclear nickel(II) dithiolate complexes with chelating diphosphines: Insight into protonation and electrochemical proton reduction.
    Author: Gu XL, Li JR, Li QL, Guo Y, Jing XB, Chen ZB, Zhao PH.
    Journal: J Inorg Biochem; 2021 Jun; 219():111449. PubMed ID: 33798827.
    Abstract:
    Inspired by the metal active sites of [FeFe]- and [NiFe]‑hydrogenases, a series of mononuclear Ni(II) ethanedithiolate complexes [{(Ph2PCH2)2×}Ni(SCH2CH2S)] (X = NCH2C5H4N-p (2a), NCH2C6H5 (2b), NCH2CHMe2 (2c), and CH2 (2d)) with chelating diphosphines were readily synthesized through the room-temperature treatments of mononuclear Ni(II) dichlorides [{(Ph2PCH2)2×}NiCl2] (1a-1d) with ethanedithiol (HSCH2CH2SH) in the presence of triethylamine (Et3N) as acid-binding agent. All the as-prepared complexes 1a-1d and 2a-2d are fully characterized through elemental analysis, nuclear magnetic resonance (NMR) spectrum, and by X-ray crystallography for 1b, 2a-2d. To further explore proton-trapping behaviors of this type of mononuclear Ni(II) complexes for catalytic hydrogen (H2) evolution, the protonation and electrochemical proton reduction of 2a-2c with aminodiphosphines (labeled PCNCP = (Ph2PCH2)2NR) and reference analogue 2d with nitrogen-free diphosphine (dppp = (Ph2PCH2)2CH2) are studied and compared under trifluoroacetic acid (TFA) as a proton source. Interestingly, the treatments of 2a-2d with excess TFA resulted in the unexpected formation of dinuclear Ni(II)-Ni(II) dication complexes [{(Ph2PCH2)2×}2Ni2(μ-SCH2CH2S)](CF3CO2)2 (3a-3d) and mononuclear Ni(II) N-protonated complexes [{(Ph2PCH2)2N(H)R}Ni(SCH2CH2S)](CF3CO2) (4a-4c), which has been well supported by high-resolution electrospray ionization mass spectroscopy (HRESI-MS), NMR (31P, 1H) as well as fourier transform infrared spectroscopy (FT-IR) techniques, and especially by X-ray crystallography for 3d. Additionally, the electrochemical properties of 2a-2d are investigated in the absence and presence of strong acid (TFA) by using cyclic voltammetry (CV), showing that the complete protonation of 2a-2d gave rise to dinuclear Ni2S2 species 3a-3d for electrocatalytic proton reduction to H2.
    [Abstract] [Full Text] [Related] [New Search]