These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Assembling cyanidin-3-O-glucoside by using low-viscosity alginate to improve its in vitro bioaccessibility and in vivo bioavailability. Author: Zou C, Huang L, Li D, Ma Y, Liu Y, Wang Y, Cao MJ, Liu GM, Sun L. Journal: Food Chem; 2021 Sep 01; 355():129681. PubMed ID: 33799247. Abstract: In this work, an enteric soluble alginate was proposed to improve the absorption efficiency of cyanidin-3-O-glucoside (C3G) through molecular self-assembly. Under the optimized conditions, the obtained low-viscosity alginate (LVA) was released completely during the simulated gastrointestinal digestion and an LVA-C3G complex with 84.2% binding efficiency was acquired. Fourier transform infrared spectroscopy displayed that the characteristic spectrum of C3G had disappeared after the LVA conjugation. Furthermore, based on the analysis of scanning electron microscopy and differential scanning calorimetry, a porous network structure and the shifted endothermic peak in the thermograms were observed, further confirming the formation of a complex between LVA and C3G. The results of simulated gastrointestinal digestion reveal that the LVA assembly significantly (p < 0.05) improved the bioaccessibility of C3G. Correspondingly, the C3G level in mouse plasma was increased by 27.4% in the C3G-LVA group. This suggests the suitability of LVA as an oral delivery vehicle for dietary anthocyanins.[Abstract] [Full Text] [Related] [New Search]