These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ag Nanoparticle-Decorated MoS2 Nanosheets for Enhancing Electrochemical Performance in Lithium Storage.
    Author: Nguyen TP, Kim IT.
    Journal: Nanomaterials (Basel); 2021 Mar 03; 11(3):. PubMed ID: 33802435.
    Abstract:
    Metallic phase 1T MoS2 is a well-known potential anode for enhancing the electrochemical performance of lithium-ion batteries owing to its mechanical/chemical stability and high conductivity. However, during the lithiation/delithiation process, MoS2 nanosheets (NSs) tend to restack to form bulky structures that deteriorate the cycling performance of bare MoS2 anodes. In this study, we prepared Ag nanoparticle (NP)-decorated 1T MoS2 NSs via a liquid exfoliation method with lithium intercalation and simple reduction of AgNO3 in NaBH4. Ag NPs were uniformly distributed on the MoS2 surface with the assistance of 3-mercapto propionic acid. Ag NPs with the size of a few nanometers enhanced the conductivity of the MoS2 NS and improved the electrochemical performance of the MoS2 anode. Specifically, the anode designated as Ag3@MoS2 (prepared with AgNO3 and MoS2 in a weight ratio of 1:10) exhibited the best cycling performance and delivered a reversible specific capacity of 510 mAh·g-1 (approximately 73% of the initial capacity) after 100 cycles. Moreover, the rate performance of this sample had a remarkable recovery capacity of ~100% when the current decreased from 1 to 0.1 A·g-1. The results indicate that the Ag nanoparticle-decorated 1T MoS2 can be employed as a high-rate capacity anode in lithium-ion storage applications.
    [Abstract] [Full Text] [Related] [New Search]