These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antioxidant Activity Evaluation of Oviductus Ranae Protein Hydrolyzed by Different Proteases. Author: Wang S, Gan Y, Mao X, Kan H, Li N, Zhang C, Wang Z, Wang Y. Journal: Molecules; 2021 Mar 15; 26(6):. PubMed ID: 33804057. Abstract: As nutrition and a health tonic for both medicine and food, the protein content of Oviductus Ranae is more than 40%, making it an ideal source to produce antioxidant peptides. This work evaluated the effects of six different proteases (pepsin, trypsin, papain, flavourzyme, neutral protease and alcalase) on the antioxidant activity of Oviductus Ranae protein, and analyzed the relationship between the hydrolysis time, the degree of hydrolysis (DH) and the antioxidant activity of the enzymatic hydrolysates. The results showed that the antioxidant activity of Oviductus Ranae protein was significantly improved and the optimal hydrolysis time was maintained between 3-4 h under the action of different proteases. Among them, the protein hydrolysate which was hydrolyzed by pepsin for 180 min had the strongest comprehensive antioxidant activity and was most suitable for the production of antioxidant peptides. At this time, the DH, the DPPH radical scavenging activity, the absorbance value of reducing power determination and the hydroxyl radical scavenging activity corresponding to the enzymatic hydrolysate were 13.32 ± 0.24%, 70.63 ± 1.53%, 0.376 ± 0.009 and 31.96 ± 0.78%, respectively. Correlation analysis showed that there was a significant positive correlation between the hydrolysis time, the DH and the antioxidant activity of the enzymatic hydrolysates, further indicating that the hydrolysates of Oviductus Ranae protein had great antioxidant potential. The traditional anti-aging efficacy of Oviductus Ranae is closely related to the scavenging of reactive oxygen species, and its hydrolysates have better antioxidant capacity, which also provides support for further development of its traditional anti-aging efficacy.[Abstract] [Full Text] [Related] [New Search]