These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Prediction Models for Obstructive Sleep Apnea in Korean Adults Using Machine Learning Techniques.
    Author: Kim YJ, Jeon JS, Cho SE, Kim KG, Kang SG.
    Journal: Diagnostics (Basel); 2021 Mar 30; 11(4):. PubMed ID: 33808100.
    Abstract:
    This study aimed to investigate the applicability of machine learning to predict obstructive sleep apnea (OSA) among individuals with suspected OSA in South Korea. A total of 92 clinical variables for OSA were collected from 279 South Koreans (OSA, n = 213; no OSA, n = 66), from which seven major clinical indices were selected. The data were randomly divided into training data (OSA, n = 149; no OSA, n = 46) and test data (OSA, n = 64; no OSA, n = 20). Using the seven clinical indices, the OSA prediction models were trained using four types of machine learning models-logistic regression, support vector machine (SVM), random forest, and XGBoost (XGB)-and each model was validated using the test data. In the validation, the SVM showed the best OSA prediction result with a sensitivity, specificity, and area under curve (AUC) of 80.33%, 86.96%, and 0.87, respectively, while the XGB showed the lowest OSA prediction performance with a sensitivity, specificity, and AUC of 78.69%, 73.91%, and 0.80, respectively. The machine learning algorithms showed high OSA prediction performance using data from South Koreans with suspected OSA. Hence, machine learning will be helpful in clinical applications for OSA prediction in the Korean population.
    [Abstract] [Full Text] [Related] [New Search]