These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Strong static and dynamic Jahn-Teller and pseudo-Jahn-Teller effects in niobium tetrafluoride. Author: Vasilyev OA, Nandipati KR, Navarkin IS, Solomonik VG, Domcke W. Journal: J Chem Phys; 2021 Mar 28; 154(12):124305. PubMed ID: 33810698. Abstract: We present a first-principles study of the static and dynamic aspects of the strong Jahn-Teller (JT) and pseudo-JT (PJT) effects in niobium tetrafluoride, NbF4, in the manifold of its electronic ground state, 2E, and its first excited state, 2T2. The complex topography of the full-dimensional multi-sheeted adiabatic JT/PJT surfaces is analyzed computationally at the complete-active-space self-consistent-field (CASSCF) and multireference second-order perturbation levels of electronic structure theory, providing a detailed characterization of minima, saddle points, and minimum-energy conical intersection points. The calculations reveal that the tetrahedral (Td) configuration of NbF4 undergoes strong JT distortions along the bending mode of e symmetry, yielding tetragonal molecular structures of D2d symmetry with Td → D2d stabilization energies of about 2000 cm-1 in the X̃2E state and about 6400 cm-1 in the Ã2T2 state. In addition, there exists strong X̃2E-Ã2T2 PJT coupling via the bending mode of t2 symmetry, which becomes important near the crossing seam of the X̃2E and Ã2T2 potential energy surfaces. A five-state five-mode JT/PJT vibronic-coupling Hamiltonian is constructed in terms of symmetry-invariant polynomial expansions of the X̃2E and Ã2T2 diabatic potential energy surfaces in the e and t2 bending coordinates. The parameters of the Hamiltonian are determined by a least-squares fit of its eigenvalues to the CASSCF ab initio data. The vibronic spectra and the time evolution of adiabatic electronic population probabilities are computed with the multi-configuration time-dependent Hartree method. The complexity of the spectra reflects the effects of the exceptionally strong E × e and T2 × e JT couplings and (E + T2) × (e + t2) PJT coupling. The time evolution of the populations of the adiabatic electronic states after the initial preparation of the Ã2T2 state reveals the femtosecond nonadiabatic dynamics through a multidimensional seam of conical intersection. These results represent the first study of the static and dynamical JT/PJT effects in the X̃2E and Ã2T2 electronic states of NbF4.[Abstract] [Full Text] [Related] [New Search]