These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Intraindividual Comparison of Compressed Sensing-Accelerated Cartesian and Radial Arterial Phase Imaging of the Liver in an Experimental Tumor Model.
    Author: Harder FN, Budjan J, Nickel MD, Grimm R, Pietsch H, Schoenberg SO, Jost G, Attenberger UI.
    Journal: Invest Radiol; 2021 Jul 01; 56(7):433-441. PubMed ID: 33813577.
    Abstract:
    OBJECTIVES: The aim of this study was to intraindividually compare the performance of 2 compressed sensing (CS)-accelerated magnetic resonance imaging (MRI) sequences, 1 featuring Cartesian (compressed sensing volumetric interpolated breath-hold examination [CS-VIBE]) and the other radial (golden-angle radial sparse parallel [GRASP]) k-space sampling in continuous dynamic imaging during hepatic vascular phases, using extracellular and hepatocyte-specific contrast agents. MATERIALS AND METHODS: Seven New Zealand white rabbits, with induced VX2 liver tumors (median number of lesions, 2 ± 0.83; range, 1-3), received 2 continuously acquired T1-weighted prototype CS-accelerated MRI sequences (CS-VIBE and GRASP) with high spatial (0.8 × 0.8 × 1.5 mm) and temporal resolution (3.5 seconds) in randomized order on 2 separate days using a 1.5-T scanner. In all animals, imaging was performed using first gadobutrol at a dose of 0.1 mmol/kg and, then 45 minutes later, gadoxetic acid at a dose of 0.025 mmol/kg.The following qualitative parameters were assessed using 3- and 5-point Likert scales (3 and 5 being the highest scores respectively): image quality (IQ), arterial and venous vessel delineation, tumor enhancement, motion artifacts, and sequence-specific artifacts. Furthermore, the following quantitative parameters were obtained: relative peak signal enhancement, time to peak, mean transit time, and plasma flow ratios. Paired sampled t tests and Wilcoxon signed rank tests were used for intraindividual comparison. Image analysis was performed by 2 radiologists. RESULTS: Six of 7 animals underwent the full imaging protocol and obtained data were analyzed statistically. Overall IQ was rated moderate to excellent, not differing significantly between the 2 sequences.Gadobutrol-enhanced CS-VIBE examinations revealed the highest mean Likert scale values in terms of vessel delineation and tumor enhancement (arterial 4.4 [4-5], venous 4.3 [3-5], and tumor 2.9 [2-3]). Significantly, more sequence-specific artifacts were seen in GRASP examinations (P = 0.008-0.031). However, these artifacts did not impair IQ. Excellent Likert scale ratings were found for motion artifacts in both sequences. In both sequences, a maximum of 4 hepatic arterial dominant phases were obtained. Regarding the relative peak signal enhancement, CS-VIBE and GRASP showed similar results. The relative peak signal enhancement values did not differ significantly between the 2 sequences in the aorta, the hepatic artery, or the inferior vena cava (P = 0.063-0.536). However, significantly higher values were noted for CS-VIBE in gadoxetic acid-enhanced examinations in the portal vein (P = 0.031) and regarding the tumor enhancement (P = 0.005). Time to peak and mean transit time or plasma flow ratios did not differ significantly between the sequences. CONCLUSIONS: Both CS-VIBE and GRASP provide excellent results in dynamic liver MRI using extracellular and hepatocyte-specific contrast agents, in terms of IQ, peak signal intensity, and presence of artifacts.
    [Abstract] [Full Text] [Related] [New Search]