These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Using Wet Electrospun PCL/Gelatin/CNT Yarns to Fabricate Textile-Based Scaffolds for Vascular Tissue Engineering.
    Author: Jiang C, Wang K, Liu Y, Zhang C, Wang B.
    Journal: ACS Biomater Sci Eng; 2021 Jun 14; 7(6):2627-2637. PubMed ID: 33821604.
    Abstract:
    Incorporating conductive materials in scaffolds has shown advantages in regulating adhesion, mitigation, and proliferation of electroactive cells for tissue engineering applications. Among various conductive materials, carbon nanotubes (CNTs) have shown great promises in tissue engineering because of their good mechanical properties. However, the broad application of CNTs in tissue engineering is limited by current methods to incorporate CNTs in polymers that require miscible solvents to dissolve CNTs and polymers or CNT surface modification. These methods either limit polymer selections or adversely affect the properties of polymer/CNT composites. Here, we report a novel method to fabricate polymer/CNT composite yarns by electrospinning polycaprolactone/gelatin into a bath of CNT dispersion and extracting electrospun fibers out of the bath. The concentration of CNTs in the bath affects the thermal and mechanical properties and the yarns' degradation behavior. In vitro biological test results show that within a limited range of CNT concentrations in the bath, the yarns exhibit good biocompatibility and the ability to guide cell elongation and alignment. We also report the design and fabrication of a vascular scaffold by knitting the yarns into a textile fabric and combining the textile fabric with gelatin. The scaffold has similar mechanical properties to native vessels and supports cell proliferation. This work demonstrates that the wet electrospun polymer/CNT yarns are good candidates for constructing vascular scaffolds and provides a novel method to incorporate CNTs or other functional materials into biopolymers for tissue engineering applications.
    [Abstract] [Full Text] [Related] [New Search]