These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transport of glycyl-L-proline in intestinal brush-border membrane vesicles of the suckling rat: characteristics and maturation.
    Author: Said HM, Ghishan FK, Redha R.
    Journal: Biochim Biophys Acta; 1988 Jun 22; 941(2):232-40. PubMed ID: 3382647.
    Abstract:
    Transport of the dipeptide glycine-L-proline (Gly-L-Pro) in the developing intestine of suckling rats and its subsequent maturation in adult rats was examined using the brush-border membrane vesicles (BBMV) technique. Uptake of Gly-L-Pro by BBMV was mainly the result of transport into the intravesicular space with little binding to membrane surfaces. Transport of Gly-L-Pro in BBMV of suckling rats was: (1) Na+ independent; (2) pH dependent with maximum uptake at an incubation buffer pH of 5.0; (3) saturable as a function of concentration (apparent Km = 21.5 +/- 7.9 mM, Vmax = 8.6 +/- 1.5 nmol/mg protein per 10 s); (4) inhibited by other di- and tripeptides; and (5) stimulated and inhibited by inducing a negative and positive intravesicular membrane electrical potential, respectively. Similarly, transport of Gly-L-Pro in intestinal BBMV of adult rats was saturable as a function of concentration (apparent Km = 17.4 +/- 8.6 mM, Vmax = 9.1 +/- 2.1 nmol/mg protein per 10 s) and was stimulated and inhibited by inducing a relatively negative and positive intravesicular membrane potential, respectively. No difference in the transport kinetic parameters of Gly-L-Pro was observed in suckling and adult rats, indicating a similar activity (and/or number) and affinity of the transport carrier in the two age groups. These results demonstrate that the transport of Gly-L-Pro is by a carrier-mediated process which is fully developed at the suckling period. Furthermore, the process is H+-dependent but not Na+-dependent, electrogenic and most probably occurs by a Gly-L-Pro/H+ cotransport mechanism.
    [Abstract] [Full Text] [Related] [New Search]