These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of driving conditions on secondary aerosol formation from a GDI vehicle using an oxidation flow reactor.
    Author: Kuittinen N, McCaffery C, Peng W, Zimmerman S, Roth P, Simonen P, Karjalainen P, Keskinen J, Cocker DR, Durbin TD, Rönkkö T, Bahreini R, Karavalakis G.
    Journal: Environ Pollut; 2021 Aug 01; 282():117069. PubMed ID: 33831626.
    Abstract:
    A comprehensive study on the effects of photochemical aging on exhaust emissions from a vehicle equipped with a gasoline direct injection engine when operated over seven different driving cycles was assessed using an oxidation flow reactor. Both primary emissions and secondary aerosol production were measured over the Federal Test Procedure (FTP), LA92, New European Driving Cycle (NEDC), US06, and the Highway Fuel Economy Test (HWFET), as well as over two real-world cycles developed by the California Department of Transportation (Caltrans) mimicking typical highway driving conditions. We showed that the emissions of primary particles were largely depended on cold-start conditions and acceleration events. Secondary organic aerosol (SOA) formation also exhibited strong dependence on the cold-start cycles and correlated well with SOA precursor emissions (i.e., non-methane hydrocarbons, NMHC) during both cold-start and hot-start cycles (correlation coefficients 0.95-0.99), with overall emissions of ∼68-94 mg SOA per g NMHC. SOA formation significantly dropped during the hot-running phases of the cycles, with simultaneous increases in nitrate and ammonium formation as a result of the higher nitrogen oxide (NOx) and ammonia emissions. Our findings suggest that more SOA will be produced during congested, slow speed, and braking events in highways.
    [Abstract] [Full Text] [Related] [New Search]