These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Light-Addressable Square Wave Voltammetry (LASWV) Based on a Field-Effect Structure for Electrochemical Sensing and Imaging.
    Author: Wang J, Chen F, Guo Q, Meng Y, Jiang M, Wu C, Zhuang J, Zhang DW.
    Journal: ACS Sens; 2021 Apr 23; 6(4):1636-1642. PubMed ID: 33832225.
    Abstract:
    Here, we describe a new photoelectrochemical imaging method termed light-addressable square wave voltammetry (LASWV). It measures local SWV currents at an unstructured electrolyte/insulator/semiconductor (EIS) field-effect substrate by illuminating and addressing the substrate with an intensity-constant laser. Due to the continuous generation of charge carriers in the light-irradiated semiconductor, the drift and diffusion of photoinjected carriers within the semiconductor bulk would slow down the equilibrium processes of charge and discharge in one potential pulse cycle. Therefore, even though SWV is sampled at the end of the direct and reverse pulses to reject capacitive currents, in our approach, photoinduced capacitive current can still be detected as an effective sensory signal. The obtained current-potential (I-V) curve shows a typical shape corresponding to the accumulation, depletion, and inversion regions of field-effect devices. We demonstrated that LASWV can be used as a field-effect chemical sensor to measure the solution pH and monitor enzymatic reactions. More importantly, since the charge carriers are only generated in the illuminated area, the laser spot in the device can be used as a virtual probe to record local electrochemical properties such as impedance with microresolution.
    [Abstract] [Full Text] [Related] [New Search]