These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inkjet Printing Transparent and Conductive MXene (Ti3C2Tx) Films: A Strategy for Flexible Energy Storage Devices.
    Author: Wen D, Wang X, Liu L, Hu C, Sun C, Wu Y, Zhao Y, Zhang J, Liu X, Ying G.
    Journal: ACS Appl Mater Interfaces; 2021 Apr 21; 13(15):17766-17780. PubMed ID: 33843188.
    Abstract:
    MXene is a generic name for a large family of two-dimensional transition metal carbides or nitrides, which show great promise in the field of transparent supercapacitors. However, the manufacturing of supercapacitor electrodes with a high charge storage capacity and desirable transmittance is a challenging task. Herein, a low-cost, large-scale, and rapid preparation of flexible and transparent MXene films via inkjet printing is reported. The MXene films realized the sheet resistance (Rs) of 1.66 ± 0.16 MΩ sq-1 to 1.47 ± 0.1 kΩ sq-1 at the transmissivity of 87-24% (λ = 550 nm), respectively, corresponding to the figure of merit (the ratio of electronic to optical conductivity, σDCOP) of ∼0.0012 to 0.13. Furthermore, the potential of inkjet-printed transparent MXene films in transparent supercapacitors was assessed by electrochemical characterization. The MXene film, with a transmittance of 24%, exhibited a superior areal capacitance of 887.5 μF cm-2 and retained 85% of the initial capacitance after 10,000 charge/discharge cycles at the scan rate of 10 mV s-1. Interestingly, the areal capacitance (192 μF cm-2) of an assembled symmetric MXene transparent supercapacitor, with a high transmittance of 73%, still surpasses the performance of previously reported graphene and single-walled carbon nanotube (SWCNT)-based transparent electrodes. The convenient manufacturing and superior electrochemical performance of inkjet-printed flexible and transparent MXene films widen the application horizon of this strategy for flexible energy storage devices.
    [Abstract] [Full Text] [Related] [New Search]