These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Classification Criteria for Behçet Disease Uveitis.
    Author: Standardization of Uveitis Nomenclature (SUN) Working Group.
    Journal: Am J Ophthalmol; 2021 Aug; 228():80-88. PubMed ID: 33845008.
    Abstract:
    PURPOSE: To determine classification criteria for Behçet disease uveitis. DESIGN: Machine learning of cases with Behçet disease and 5 other panuveitides. METHODS: Cases of panuveitides were collected in an informatics-designed preliminary database, and a final database was constructed of cases achieving supermajority agreement on the diagnosis, using formal consensus techniques. Cases were split into a training set and a validation set. Machine learning using multinomial logistic regression was used on the training set to determine a parsimonious set of criteria that minimized the misclassification rate among the intermediate uveitides. The resulting criteria were evaluated on the validation set. RESULTS: One thousand twelve cases of panuveitides, including 194 cases of Behçet disease with uveitis, were evaluated by machine learning. The overall accuracy for panuveitides was 96.3% in the training set and 94.0% in the validation set (95% confidence interval 89.0, 96.8). Key criteria for Behçet disease uveitis were a diagnosis of Behçet disease using the International Study Group for Behçet Disease criteria and a compatible uveitis, including (1) anterior uveitis; (2) anterior chamber and vitreous inflammation; (3) posterior uveitis with retinal vasculitis and/or focal infiltrates; or (4) panuveitis with retinal vasculitis and/or focal infiltrates. The misclassification rates for Behçet disease uveitis were 0.6% in the training set and 0% in the validation set, respectively. CONCLUSIONS: The criteria for Behçet disease uveitis had a low misclassification rate and seemed to perform sufficiently well for use in clinical and translational research.
    [Abstract] [Full Text] [Related] [New Search]