These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A green decontamination technology through selective biomineralization of algicidal microorganisms for enhanced astaxanthin production from Haematococcus pluvialis at commercial scale.
    Author: Yu BS, Hong ME, Sung YJ, Choi HI, Chang WS, Kwak HS, Sim SJ.
    Journal: Bioresour Technol; 2021 Jul; 332():125121. PubMed ID: 33845314.
    Abstract:
    Currently, there is a lack of an efficient, environmentally-benign and sustainable industrial decontamination strategy to steadily achieve improved astaxanthin production from Haematococcus pluvialis under large-scale outdoor conditions. Here, this study demonstrates for the first time that a CaCO3 biomineralization-based decontamination strategy (CBDS) is highly efficient in selectively eliminating algicidal microorganisms, such as bacteria and fungi, during large-scale H. pluvialis cultivation under autotrophic and mixotrophic conditions, thereby augmenting the astaxanthin productivity. Under outdoor AT and MT conditions, the average astaxanthin productivity of H. pluvialis using CBDS in a closed photobioreactor system was substantially increased by 14.85- (1.19 mg L-1 d-1) and 13.65-fold (2.43 mg L-1 d-1), respectively, compared to the contaminated H. pluvialis cultures. Given the exponentially increasing demand of astaxanthin, a natural anti-viral, anti-inflammatory, and antioxidant drug, CBDS will be a technology of interest in H. pluvialis-based commercial astaxanthin production which has been hindered by the serious biological contaminations.
    [Abstract] [Full Text] [Related] [New Search]