These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Simultaneous Gene Excision and Integration by Dual-Guide CRISPR-Cas9. Author: Spagnuolo M, Blenner M. Journal: Methods Mol Biol; 2021; 2307():69-83. PubMed ID: 33847982. Abstract: Metabolic engineering frequently requires both gene knockouts and gene integration. CRISPR-Cas9 has been extensively used to create double-stranded DNA breaks that result in indel mutations; however, such mutations can revert or create toxic product. Gene integration can also be accomplished by CRISPR-Cas9 introduced double-stranded DNA breaks and a donor DNA cassette. Here we describe our protocol for combining an efficient gene knockout created by introducing DNA cuts with two guide RNAs with a gene to be integrated at the knockout site. Including guide RNA target sites flanking the homology regions around the gene to be integrated enables both homology-directed repair and homology-mediated end joining, resulting in few deletions and a significant proportion of correctly knocked out and integrated genes.[Abstract] [Full Text] [Related] [New Search]