These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Organic Nanoparticles-Assisted Low-Power STED Nanoscopy.
    Author: Man Z, Cui H, Lv Z, Xu Z, Wu Z, Wu Y, Liao Q, Liu M, Xi P, Zheng L, Fu H.
    Journal: Nano Lett; 2021 Apr 28; 21(8):3487-3494. PubMed ID: 33848175.
    Abstract:
    Stimulated emission depletion (STED) nanoscopy plays a key role in achieving sub-50 nm high spatial resolution for subcellular live-cell imaging. To avoid re-excitation, the STED wavelength has to be tuned at the red tail of the emission spectrum of fluorescent probes, leading to high depletion laser power that might damage the cell viability and functionality. Herein, with the highly emissive silica-coated core-shell organic nanoparticles (CSONPs) enabling a giant Stokes shift of 150 nm, ultralow power STED is achieved by shifting the STED wavelength to the emission maximum at 660 nm. The stimulated emission cross section is increased by ∼20-fold compared to that at the emission red tail. The measured saturation intensity and lateral resolution of our CSONP are 0.0085 MW cm-2 and 25 nm, respectively. More importantly, long-term (>3 min) dynamic super-resolution imaging of the lysosomal fusion-fission processes in living cells is performed with a resolution of 37 nm.
    [Abstract] [Full Text] [Related] [New Search]