These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genome-wide analysis and functional characterization of the Dof transcription factor family in rice (Oryza sativa L.). Author: Khan I, Khan S, Zhang Y, Zhou J. Journal: Planta; 2021 Apr 15; 253(5):101. PubMed ID: 33856565. Abstract: Exhaustive searches of the rice genome have revealed 30 different potential OsDof (Oryza sativa DNA binding with One Finger) genes. Their subcellular localization, phylogenetic relationship, conserved motifs identification, chromosomal allocation, expression patterns, and interaction networks were analyzed. The Dof (DNA binding with One Finger) family of transcription factors represents a particular class of plant-specific transcriptional regulators, contain a highly conserved region of 50-52 amino acids (Dof domain) and involved in various plant developmental processes and response to various environmental stresses. Few (Oryza sativa) OsDof genes have been demonstrated previously for their biological functions but there is no comprehensive study on most of the Dof genes of rice. In the current study, exhaustive searches of the rice genome revealed 30 different potential OsDof genes, and then their subcellular localization, phylogenetic relationship, conserved motifs identification, chromosomal allocation, expression patterns, and interaction networks were analyzed. Phylogenetic analysis of Dof proteins in rice showed that they are distributed in 4 groups. By genome-wide observation of gene expression profiles, we found that OsDof genes showed significant variances in expression levels in different tissues across multiple developmental stages. Protein-protein correlation network analysis, shows a statically significant overlap of some OsDofs, suggesting their similar functions and a high degree of co-expression. The Dof family transcription factors have been reported for their involvement in the regulation of various gene expression processes in rice but still, most of the Dof genes are not characterized for their specific physiological functions. This study revealed useful information and clues about predicting the potential roles of OsDofs in rice by combining their genome-wide characterization, expression profiling, protein-protein interactions, and for further studies to develop high-quality rice varieties.[Abstract] [Full Text] [Related] [New Search]