These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transcriptomic analysis reveals the parallel transcriptional regulation of UV-B-induced artemisinin and flavonoid accumulation in Artemisia annua L.
    Author: Li Y, Qin W, Fu X, Zhang Y, Hassani D, Kayani SI, Xie L, Liu H, Chen T, Yan X, Peng B, Wu-Zhang K, Wang C, Sun X, Li L, Tang K.
    Journal: Plant Physiol Biochem; 2021 Jun; 163():189-200. PubMed ID: 33857913.
    Abstract:
    UV-B radiation is a pivotal photomorphogenic signal and positively regulates plant growth and metabolite biosynthesis. In order to elucidate the transcriptional regulation mechanism underlying UV-B-induced artemisinin and flavonoid biosynthesis in Artemisia annua, the transcriptional responses of A. annua L. leaves to UV-B radiation were analyzed using the Illumina transcriptome sequencing. A total of 10705 differentially expressed genes (DEGs) including 533 transcription factors (TFs), were identified. Based on the expression trends of the differentially expressed TFs as well as artemisinin and flavonoid biosynthesis genes, we speculated that TFs belonging to 6 clusters were most likely to be involved in the regulation of artemisinin and/or flavonoid biosynthesis. The regulatory relationship between TFs and artemisinin/flavonoid biosynthetic genes was further studied. Dual-LUC assays results showed that AaMYB6 is a positive regulator of AaLDOX which belongs to flavonoid biosynthesis pathway. In addition, we identified an R2R3 MYB TF, AaMYB4 which potentially mediated both artemisinin and flavonoid biosynthesis pathways by activating the expression of AaADS and AaDBR2 in artemisinin biosynthesis pathway and AaUFGT in flavonoid biosynthesis pathway. Overall, our findings would provide an insight into the elucidation of the parallel transcriptional regulation of artemisinin and flavonoid biosynthesis in A. annua L. under UV-B radiation.
    [Abstract] [Full Text] [Related] [New Search]