These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Waste activated sludge stimulates in situ microbial reductive dehalogenation of organohalide-contaminated soil.
    Author: Lu Q, Liu J, He H, Liang Z, Qiu R, Wang S.
    Journal: J Hazard Mater; 2021 Jun 05; 411():125189. PubMed ID: 33858119.
    Abstract:
    Due to its enriched organic matter, nutrients and growth cofactors, as well as a diverse range of microorganisms, waste activated sludge (WAS) might be an ideal additive to stimulate organohalide respiration for in situ bioremediation of organohalide-contaminated sites. In this study, we investigated the biostimulation and bioaugmentation impacts of WAS-amendment on the performance and microbiome in tetrachloroethene (PCE) and polychlorinated biphenyls (PCBs) dechlorinating microcosms. Results demonstrated that WAS-amendment increased PCE- and PCBs-dechlorination rate as much as 6.06 and 10.67 folds, respectively. The presence of WAS provided a favorable growth niche for organohalide-respiring bacteria (OHRB), including redox mediation and generation of electron donors and carbon sources. Particularly for the PCE dechlorination, indigenous Geobacter and WAS-derived Dehalococcoides were identified to play key roles in PCE-to-dichloroethene (DCE) and DCE-to-ethene dechlorination, respectively. Similar biostimulation and bioaugmentation effects of WAS-amendment were observed on both PCE- and PCBs-dechlorination in three different soils, i.e., laterite, brown loam and paddy soil. Risk assessment suggested low potential ecological risk of WAS amendment in remediation of organohalide-contaminated soil. Overall, this study provided an economic and efficient strategy to stimulate the organohalide respiration-based bioremediation in field applications.
    [Abstract] [Full Text] [Related] [New Search]