These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MicroRNA-532-5p protects against cerebral ischemia-reperfusion injury by directly targeting CXCL1.
    Author: Shi Y, Yi Z, Zhao P, Xu Y, Pan P.
    Journal: Aging (Albany NY); 2021 Apr 18; 13(8):11528-11541. PubMed ID: 33867350.
    Abstract:
    We investigated the function of microRNA (miR)-532-5p in cerebral ischemia-reperfusion injury (CI/RI) and the underlying mechanisms using oxygen-glucose deprivation and reperfusion (OGD/R)-treated SH-SY5Y cells and middle cerebral artery occlusion (MCAO) model rats. MiR-532-5p levels were significantly downregulated in OGD/R-treated SH-SY5Y cells and the brain tissues of MCAO model rats. MiR-532-5p overexpression significantly reduced apoptosis, reactive oxygen species (ROS), and inflammation in the OGD/R-induced SH-SY5Y cells. Bioinformatics analysis using the targetscan and miRDB databases as well as dual luciferase reporter assays confirmed that miR-532-5p directly binds to the 3'UTR of C-X-C Motif Ligand 1 (CXCL1). Methylation-specific PCR (MSP) analysis showed that miR-532-5p expression was reduced in OGD/R-treated SH-SY5Y cells because of miR-532-5p promoter hypermethylation. Moreover, 5-azacytidine, a methylation inhibitor, restored miR-532-5p expression in OGD/R-treated SH-SY5Y cells. Brain tissues of MCAO model rats showed significantly increased cerebral infarction areas, cerebral water, neuronal apoptosis, and activated CXCL1/CXCR2/NF-κB signaling, but these effects were alleviated by intraventricular injection of miR-532-5p agomir. These findings demonstrate that miR-532-5p overexpression significantly reduces in vitro and in vivo CI/RI by targeting CXCL1. Thus, miR-532-5p is a potential therapeutic target for patients with CI/RI.
    [Abstract] [Full Text] [Related] [New Search]