These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: LncRNA OIP5-AS1 accelerates ox-LDL-treated HUVECs injury by NF-κB pathway via miR-30c-5p.
    Author: Zhang L, Li Q, Chen Y, Zhu Q.
    Journal: Clin Hemorheol Microcirc; 2021; 78(4):449-460. PubMed ID: 33867356.
    Abstract:
    BACKGROUND: Oxidized low-density lipoprotein (ox-LDL) could induce endothelial injury and played a vital role in the progression and development of atherosclerosis. This study aimed to investigate the role of Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1) in ox-LDL-induced human umbilical vascular endothelial cells (HUVECs) injury and the potential mechanisms. METHODS: Cell proliferation and apoptosis were evaluated by Cell Counting Kit-8 (CCK-8) assay and flow cytometry assay, respectively. The levels of lactate dehydrogenase (LDH), reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD) and nitric oxide (NO) were detected by corresponding detection kits, respectively. Quantitative real-time PCR (qRT-PCR) was conducted to measure the expression of OIP5-AS1 or microRNA-30c-5p (miR-30c-5p) in HUVECs. Binding between OIP5-AS1 and miR-30c-5p was predicted through bioinformatics analysis and confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP). Western blot was used to analyze p-IκB, IκB, p-p65 and p65 levels. RESULTS: In HUVECs, exposure to ox-LDL led to a decrease in cell viability and an increase in LDH release and apoptosis with concomitant enhancement of oxidative stress, as evidenced by increased ROS and MDA generation, as well as decreased SOD activity and NO levels, while OIP5-AS1 knockdown or miR-30c-5p upregulation could rescue these effects above. Mechanically, OIP5-AS1 functioned as a sponge of miR-30c-5p. OIP5-AS1-induced injury and apoptosis, oxidative stress and activation of NF-κB pathway were reversed by miR-30c-5p in ox-LDL-treated HUVECs. CONCLUSION: OIP5-AS1 contributed to ox-LDL-treated HUVECs injury by activation of NF-κB pathway via miR-30c-5p.
    [Abstract] [Full Text] [Related] [New Search]