These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Usefulness of semi-automatic harmonization strategy of standardized uptake values for multicenter PET studies. Author: Daisaki H, Kitajima K, Nakajo M, Watabe T, Ito K, Sakamoto F, Nakahara T, Ishibashi M, Toriihara A. Journal: Sci Rep; 2021 Apr 19; 11(1):8517. PubMed ID: 33875730. Abstract: This study assessed the possibility of semi-automatic harmonization of standardized uptake values (SUVs) in multicenter studies. Phantom data were acquired using 16 PET/CT scanners (including 3 PET/CT scanners with a silicon photomultiplier detector). PET images obtained using 30-min/bed scans for optimum harmonization filter calculations and using 90-180-s/bed scans for SUV validation under clinical conditions were obtained. Time of flight and a reconstruction method with point-spread function correction were allowed. The optimal full width at half maximum of the 3D-Gaussian filter that minimizes the root mean square error with the median value of the JSNM harmonization range was calculated semi-automatically. The SUVmax and the SUVpeak of the hot spheres were measured, and the inter-scanner coefficient of variation (COV) was calculated before and after harmonization. The harmonization filter was applied to 11 of the 15 PET/CT scanners in which the SUV calibration accuracy had been verified, but not in the remaining 4 scanners. Under noiseless conditions before harmonization, the inter-scanner COVs of the SUVmax and the SUVpeak were as high as 21.57% and 12.20%, respectively, decreasing to 8.79% and 5.73% after harmonization, respectively. Harmonization brought the SUVmax of all the hot spheres to within the harmonization range. Even under clinical conditions affected by image noise, the inter-scanner COVs for the SUVmax and SUVpeak were as high as 8.83% and 5.18% after harmonization, respectively. By applying an optimal harmonization filter that is calculated semi-automatically, the harmonization of SUVs according to the JSNM strategy is possible in multicenter studies, thereby reducing inter-scanner COVs.[Abstract] [Full Text] [Related] [New Search]