These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Coupling stable isotopes to evaluate sources and transformations of nitrate in groundwater and inflowing rivers around the Caohai karst wetland, Southwest China. Author: Cao X, Yang S, Wu P, Liu S, Liao J. Journal: Environ Sci Pollut Res Int; 2021 Sep; 28(33):45826-45839. PubMed ID: 33880699. Abstract: Nitrate is one of the most common pollutants in aquatic ecosystems, particularly in highly vulnerable karst aquifers. In Caohai Lake, an important karst wetland in southwestern China, karst surface water and groundwater are important recharge water sources, and nitrates flow into the wetland along with the surface water and groundwater, degrading the wetland water quality. Therefore, identifying the sources of nitrate in the surface water and groundwater in the Caohai catchment is of great significance to the protection of the wetland water environment. In this study, the nitrate concentrations, hydrochemistry and multiple stable isotope ratios (δ18O-H2O, δD-H2O, δ15N-NO3- and δ18O-NO3-) were used to identify the sources and fate of the NO3- in the groundwater and inflowing rivers around the Caohai wetland. The results showed that the NO3- concentrations in the groundwater samples from the southern side exceeded the WHO limit during the wet season, while other samples did not exceed the limit. The mean concentrations of NO3- in groundwater were higher than those in the inflowing river water, and NO3- concentrations decreased in the order of wet season>dry season>normal season in the groundwater and inflowing rivers. The hydrochemistry and multiple isotope ratios suggest that the nitrate transformation was dominated by nitrification processes, while denitrification had an influence on the transformation of NO3- (as evidenced by isotopes) in groundwater during the dry season. According to the analyses based on a stable isotope analysis in R (SIAR), sewage and manure were the main sources of NO3- in the groundwater, while sewage, manure and chemical fertilizer were the major sources of NO3- in the inflowing river water; therefore, the scientific use of farmland fertilizers and the treatment of domestic sewage should be strengthened to safeguard groundwater quality and control the NO3- concentrations in rivers.[Abstract] [Full Text] [Related] [New Search]