These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of pyruvate decarboxylase (pdc1, pdc5) gene knockout on the production of metabolites in two haploid Saccharomyces cerevisiae strains. Author: Zhang W, Kang J, Wang C, Ping W, Ge J. Journal: Prep Biochem Biotechnol; 2022; 52(1):62-69. PubMed ID: 33881948. Abstract: Saccharomyces cerevisiae has good reproductive ability in both haploid and diploid forms, a pyruvate decarboxylase plays an important role in S. cerevisiae cell metabolism. In this study, pdc1 and pdc5 double knockout strains of S. cerevisiae H14-02 (MATa type) and S. cerevisiae H5-02 (MATα type) were obtained by the Cre/loxP technique. The effects of the deletion of pdc1 and pdc5 on the metabolites of the two haploid S. cerevisiae strains were consistent. In S. cerevisiae H14-02, the ethanol conversion decreased by 30.19%, the conversion of glycerol increased by 40.005%, the concentration of acetic acid decreased by 43.54%, the concentration of acetoin increased by 12.79 times, and the activity of pyruvate decarboxylase decreased by 40.91% compared to those in the original H14 strain. The original S. cerevisiae haploid strain H14 produced a small amount of acetoin but produced very little 2,3-butanediol. However, S. cerevisiae H14-02 produced 1.420 ± 0.063 g/L 2,3-BD. This study not only provides strain selection for obtaining haploid strains with a high yield of 2,3-BD but also lays a foundation for haploid S. cerevisiae to be used as a new tool for genetic research and breeding programs.[Abstract] [Full Text] [Related] [New Search]