These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of heart rate dynamics during treadmill exercise: comparison of first- and second-order models.
    Author: Wang H, Hunt KJ.
    Journal: Biomed Eng Online; 2021 Apr 21; 20(1):37. PubMed ID: 33882920.
    Abstract:
    BACKGROUND: Characterisation of heart rate (HR) dynamics and their dependence on exercise intensity provides a basis for feedback design of automatic HR control systems. This work aimed to investigate whether the second-order models with separate Phase I and Phase II components of HR response can achieve better fitting performance compared to the first-order models that do not delineate the two phases. METHODS: Eleven participants each performed two open-loop identification tests while running at moderate-to-vigorous intensity on a treadmill. Treadmill speed was changed as a pseudo-random binary sequence (PRBS) to excite both the Phase I and Phase II components. A counterbalanced cross-validation approach was implemented for model parameter estimation and validation. RESULTS: Comparison of validation outcomes for 22 pairs of first- and second-order models showed that root-mean-square error (RMSE) was significantly lower and fit (normalised RMSE) significantly higher for the second-order models: RMSE was 2.07 bpm ± 0.36 bpm vs. 2.27 bpm ± 0.36 bpm (bpm = beats per min), second order vs. first order, with [Formula: see text]; fit was [Formula: see text]% vs. [Formula: see text]%, [Formula: see text]. CONCLUSION: Second-order models give significantly better goodness-of-fit than first-order models, likely due to the inclusion of both Phase I and Phase II components of heart rate response. Future work should investigate alternative parameterisations of the PRBS excitation, and whether feedback controllers calculated using second-order models give better performance than those based on first-order models.
    [Abstract] [Full Text] [Related] [New Search]