These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Anthropogenic-Driven Alterations in Black Carbon Sequestration and the Structure in a Deep Plateau Lake. Author: Huang C, Lu L, Li Y, He Y, Shang N, Bai Y, Yu H, Huang T, Zhu AX, Yang H, Zhao K, Yu Y. Journal: Environ Sci Technol; 2021 May 04; 55(9):6467-6475. PubMed ID: 33886307. Abstract: The continuous flux of organic carbon (OC) from terrestrial ecosystems into inland water is an important component of the global carbon cycle. The buried OC pool in inland water sediments is considerable, and black carbon (BC) is a significant contributor to this OC pool because of the continuous growth in BC emissions. Therefore, determining the effect of BC on total OC burial and variations in the structure of BC during the burial process will contribute significantly to our understanding of lacustrine carbon cycling. This study investigated BC burial and its structural variations in response to anthropogenic drivers using four dated sedimentary cores from a deep plateau lake in China. The BC burial rate rose from 0.96 ± 0.64 g·m-2·y-1 (mean of sedimentary cores pre-1960s) to 4.83 ± 1.25 g·m-2·y-1 (after 2000), which is a 5.48 ± 2.12-fold rise. The increase of char was similar to those of BC. The growth rate of soot was 7.20 ± 4.30 times, which is higher than that of BC and char, increasing from 0.12 ± 0.08 to 0.64 ± 0.23 g·m-2·y-1. There was a decreasing trend in the ratio of char and soot at a mean rate of 62.8 ± 6.46% (excluding core 3) in relation to increased fossil fuel consumption. The contribution of BC to OC burial showed a significant increasing trend from the past to the present, particularly in cores 3 and 4, and the mean contribution of the four cores was 11.78 ± 2.84%. Source tracer results from positive matrix factorization confirmed that the substantial use of fossil fuels has promoted BC burial and altered the BC structure. This has resulted in BC with a higher aromatic content in the lake sediment, which exhibits reduced reactivity and increased stability. The strong correlation between BC and allochthonous total OC indicates that the input pathways of the buried BC in this plateau lake sediment were terrestrial surface processes and not atmospheric deposition.[Abstract] [Full Text] [Related] [New Search]