These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A two-tier junctional mechanism drives simultaneous tissue folding and extension. Author: John A, Rauzi M. Journal: Dev Cell; 2021 May 17; 56(10):1469-1483.e5. PubMed ID: 33891900. Abstract: During embryo development, tissues often undergo multiple concomitant changes in shape. It is unclear which signaling pathways and cellular mechanisms are responsible for multiple simultaneous tissue shape transformations. We focus on the process of concomitant tissue folding and extension that is key during gastrulation and neurulation. We use the Drosophila embryo as model system and focus on the process of mesoderm invagination. Here, we show that the prospective mesoderm simultaneously folds and extends. We report that mesoderm cells, under the control of anterior-posterior and dorsal-ventral gene patterning synergy, establish two sets of adherens junctions at different apical-basal positions with specialized functions: while apical junctions drive apical constriction initiating tissue bending, lateral junctions concomitantly drive polarized cell intercalation, resulting in tissue convergence-extension. Thus, epithelial cells devise multiple specialized junctional sets that drive composite morphogenetic processes under the synergistic control of apparently orthogonal signaling sources.[Abstract] [Full Text] [Related] [New Search]