These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Curcumin-loaded liposomes with the hepatic and lysosomal dual-targeted effects for therapy of hepatocellular carcinoma. Author: Wang Y, Ding R, Zhang Z, Zhong C, Wang J, Wang M. Journal: Int J Pharm; 2021 Jun 01; 602():120628. PubMed ID: 33892061. Abstract: Curcumin can induce cancer cell apoptosis through lysosomal permeabilization pathway. However, the poor selectivity of curcumin restricts its use in the therapy of hepatocellular carcinoma. Because galactose group can recognize ASGPR overexpressed on hepatoma cells and morpholine group can target to the lysosome, they are integrated into a dual-targeted lipid material with low toxicity. The corresponding galactose-morpholine modified liposomes loaded with curcumin (Gal-Mor-LPs) were prepared and evaluated in comparison with conventional liposomes (LPs) and galactose modified liposomes (Gal-LPs). The in vitro and in vivo hepatic targeting capacity of liposomes followed a trend of LPs < Gal-LPs < Gal-Mor-LPs. The endocytosis of Gal-Mor-LPs was competitively inhibited by galactose, which confirmed the galactose modified liposomes entered hepatoma cells via ASGPR-mediated pathway. Gal-Mor-LPs displayed more excellent lysosomal targeting efficacy than LPs and Gal-LPs due to the attraction of acidic lysosome on basic morpholine group of Gal-Mor-LPs. The in vivo tumor inhibition effects of formulations also followed a trend of free curcumin < LPs < Gal-LPs < Gal-Mor-LPs, confirming that hepatic and lysosomal dual-targeting vehicle can improve the antitumor efficacy of curcumin. Moreover, the curcumin-loaded liposomes modified with galactose and morpholine moieties show good biocompatibility in vivo.[Abstract] [Full Text] [Related] [New Search]