These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of Discoidin Domain Receptor 2 in Craniofacial Bone Regeneration. Author: Binrayes A, Ge C, Mohamed FF, Franceschi RT. Journal: J Dent Res; 2021 Nov; 100(12):1359-1366. PubMed ID: 33899571. Abstract: Bone loss caused by trauma, neoplasia, congenital defects, or periodontal disease is a major cause of disability and human suffering. Skeletal progenitor cell-extracellular matrix interactions are critical for bone regeneration. Discoidin domain receptor 2 (DDR2), an understudied collagen receptor, plays an important role in skeletal development. Ddr2 loss-of-function mutations in humans and mice cause severe craniofacial and skeletal defects, including altered cranial shape, dwarfing, reduced trabecular and cortical bone, alveolar bone/periodontal defects, and altered dentition. However, the role of this collagen receptor in craniofacial regeneration has not been examined. To address this, calvarial subcritical-size defects were generated in wild-type (WT) and Ddr2-deficient mice. The complete bridging seen in WT controls at 4 wk postsurgery was not observed in Ddr2-deficient mice even after 12 wk. Quantitation of defect bone area by micro-computed tomography also revealed a 50% reduction in new bone volume in Ddr2-deficient mice. Ddr2 expression during calvarial bone regeneration was measured using Ddr2-LacZ knock-in mice. Expression was restricted to periosteal surfaces of uninjured calvarial bone and, after injury, was detected in select regions of the defect site by 3 d postsurgery and expanded during the healing process. The impaired bone healing associated with Ddr2 deficiency may be related to reduced osteoprogenitor or osteoblast cell proliferation and differentiation since knockdown/knockout of Ddr2 in a mesenchymal cell line and primary calvarial osteoblast cultures reduced osteoblast differentiation while Ddr2 overexpression was stimulatory. In conclusion, Ddr2 is required for cranial bone regeneration and may be a novel target for therapy.[Abstract] [Full Text] [Related] [New Search]