These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Shifted phase of EEG cross-frequency coupling in individuals with Phelan-McDermid syndrome. Author: Mariscal MG, Berry-Kravis E, Buxbaum JD, Ethridge LE, Filip-Dhima R, Foss-Feig JH, Kolevzon A, Modi ME, Mosconi MW, Nelson CA, Powell CM, Siper PM, Soorya L, Thaliath A, Thurm A, Zhang B, Sahin M, Levin AR, Developmental Synaptopathies Consortium. Journal: Mol Autism; 2021 Apr 28; 12(1):29. PubMed ID: 33910615. Abstract: BACKGROUND: Phelan-McDermid Syndrome (PMS) is a rare condition caused by deletion or mutation of the SHANK3 gene. Individuals with PMS frequently present with intellectual disability, autism spectrum disorder, and other neurodevelopmental challenges. Electroencephalography (EEG) can provide a window into network-level function in PMS. METHODS: Here, we analyze EEG data collected across multiple sites in individuals with PMS (n = 26) and typically developing individuals (n = 15). We quantify oscillatory power, alpha-gamma phase-amplitude coupling strength, and phase bias, a measure of the phase of cross frequency coupling thought to reflect the balance of feedforward (bottom-up) and feedback (top-down) activity. RESULTS: We find individuals with PMS display increased alpha-gamma phase bias (U = 3.841, p < 0.0005), predominantly over posterior electrodes. Most individuals with PMS demonstrate positive overall phase bias while most typically developing individuals demonstrate negative overall phase bias. Among individuals with PMS, strength of alpha-gamma phase-amplitude coupling was associated with Sameness, Ritualistic, and Compulsive behaviors as measured by the Repetitive Behavior Scales-Revised (Beta = 0.545, p = 0.011). CONCLUSIONS: Increased phase bias suggests potential circuit-level mechanisms underlying phenotype in PMS, offering opportunities for back-translation of findings into animal models and targeting in clinical trials.[Abstract] [Full Text] [Related] [New Search]