These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Anisotropic g-Factor and Spin-Orbit Field in a Germanium Hut Wire Double Quantum Dot. Author: Zhang T, Liu H, Gao F, Xu G, Wang K, Zhang X, Cao G, Wang T, Zhang J, Hu X, Li HO, Guo GP. Journal: Nano Lett; 2021 May 12; 21(9):3835-3842. PubMed ID: 33914549. Abstract: Holes in nanowires have drawn significant attention in recent years because of the strong spin-orbit interaction, which plays an important role in constructing Majorana zero modes and manipulating spin-orbit qubits. Here, from the strongly anisotropic leakage current in the spin blockade regime for a double dot, we extract the full g-tensor and find that the spin-orbit field is in plane with an azimuthal angle of 59° to the axis of the nanowire. The direction of the spin-orbit field indicates a strong spin-orbit interaction along the nanowire, which may have originated from the interface inversion asymmetry in Ge hut wires. We also demonstrate two different spin relaxation mechanisms for the holes in the Ge hut wire double dot: spin-flip co-tunneling to the leads, and spin-orbit interaction within the double dot. These results help establish feasibility of a Ge-based quantum processor.[Abstract] [Full Text] [Related] [New Search]