These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Degradation of human intestinal glycosphingolipids by extracellular glycosidases from mucin-degrading bacteria of the human fecal flora.
    Author: Larson G, Falk P, Hoskins LC.
    Journal: J Biol Chem; 1988 Aug 05; 263(22):10790-8. PubMed ID: 3392043.
    Abstract:
    Certain normal strains of human fecal bacteria are unique in producing extracellular glycosidases that degrade the oligosaccharide chains of gut mucin glycoproteins. We have studied the action of such glycosidases partially purified from the cell-free supernates of five of these strains on intestinal glycosphingolipids isolated from human meconium. The glycolipids were sialosyl-lactosylceramide, lactosylceramide, and fucolipids with A, B, H, Lea, or Leb blood group determinants. In addition to the strain-specific high blood group A-degrading activities (Ruminococcus torques strains VIII-239 and IX-70), B-degrading activity (Ruminococcus AB strain VI-268), and H-degrading activities (all strains) corresponding to alpha 1-3-N-acetylgalactosaminidase, alpha 1-3-galactosidase and alpha 1-2-fucosidase, respectively, all strains also degraded sialosyl-lactosylceramide and Lea and Leb antigenic glycolipids, indicating the presence of alpha 2-3-neuraminidases and alpha 1-4-fucosidases. Enzyme preparations from Bifidobacterium infantis strain VIII-240 and R. torques strain VIII-239 hydrolyzed the Lea active glycolipid directly to lactosylceramide, suggesting the presence of endo-beta 1-3-N-acetylglucosaminidase activities. Similar endo-beta-N-acetylglucosaminidase activities were identified in four of the five enzyme preparations. The enzymes produced by R. AB strain VI-268 lacked this activity as well as beta 1-3-galactosidase, and thus degradation stopped at lactotetraosylceramide. With enzyme preparations from the other strains lactosylceramide was the single major degradation product from complex glycosphingolipids with less than 30% further degradation to glucosylceramide within 48 h. We conclude that glycosidases from mucin-degrading strains of human enteric bacteria degrade oligosaccharide chains of lactoseries fucolipids and gangliosides of intestinal origin primarily to lactosylceramide. Since several genera of enteric bacteria bind preferentially to lactosylceramide in vitro, mucin-degrading strains may have an important ecological role in host-microbial associations in the human gut.
    [Abstract] [Full Text] [Related] [New Search]