These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The interaction of intracellular Mg2+ and pH on Cl- fluxes associated with intracellular pH regulation in barnacle muscle fibers. Author: Russell JM, Brodwick MS. Journal: J Gen Physiol; 1988 Apr; 91(4):495-513. PubMed ID: 3392519. Abstract: The intracellular dialysis technique was used to measure unidirectional Cl- fluxes and net acid extrusion by single muscle fibers from the giant barnacle. Decreasing pHi below normal levels of 7.35 stimulated both Cl- efflux and influx. These increases of Cl- fluxes were blocked by disulfonic acid stilbene derivatives such as SITS and DIDS. The SITS-sensitive Cl- efflux was sharply dependent upon pHi, increasing approximately 20-fold as pHi was decreased from 7.35 to 6.7. Under conditions of normal intracellular Mg2+ concentration, the apparent pKa for the activation of Cl- efflux was 7.0. We found that raising [Mg2+]i, but not [Mg2+]o, had a pronounced inhibitory effect on both SITS-sensitive unidirectional Cl- fluxes as well as on SITS-sensitive net acid extrusion. Increasing [Mg2+]i shifted the apparent pKa of Cl- efflux to a more acid value without affecting the maximal flux that could be attained. This relation between pHi and [Mg2+]i on SITS-sensitive Cl- efflux is consistent with a competition between H ions and Mg ions. We conclude that the SITS-inhibitable Cl- fluxes are mediated by the pHi-regulatory transport mechanism and that changes of intracellular Mg2+ levels can modify the activity of the pHi regulator/anion transporter.[Abstract] [Full Text] [Related] [New Search]