These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Epigenetic analysis of Paget's disease of bone identifies differentially methylated loci that predict disease status.
    Author: Diboun I, Wani S, Ralston SH, Albagha OM.
    Journal: Elife; 2021 Apr 30; 10():. PubMed ID: 33929316.
    Abstract:
    Paget's disease of bone (PDB) is characterized by focal increases in disorganized bone remodeling. This study aims to characterize PDB-associated changes in DNA methylation profiles in patients' blood. Meta-analysis of data from the discovery and cross-validation set, each comprising 116 PDB cases and 130 controls, revealed significant differences in DNA methylation at 14 CpG sites, 4 CpG islands, and 6 gene-body regions. These loci, including two characterized as functional through expression quantitative trait-methylation analysis, were associated with functions related to osteoclast differentiation, mechanical loading, immune function, and viral infection. A multivariate classifier based on discovery samples was found to discriminate PDB cases and controls from the cross-validation with a sensitivity of 0.84, specificity of 0.81, and an area under curve of 92.8%. In conclusion, this study has shown for the first time that epigenetic factors contribute to the pathogenesis of PDB and may offer diagnostic markers for prediction of the disease. Our skeleton stays healthy through an endless regeneration process, with specialized cells constantly absorbing and creating new bone tissue. Illnesses emerge when this breaking down and rebuilding cycle becomes imbalanced. For instance, in Paget’s disease of bone (PDB for short) the skeleton becomes misshapen and fragile, with complications including pain, fractures, neurological problems, hearing loss and even cancer. For most patients however, symptoms are only present at an advanced stage, when irreversible damage to the skeleton has already occurred. Certain inherited genetic changes play a role in the development of PDB, but lifestyle and environmental factors are also thought to contribute. Indeed, accumulating evidence suggests that diet, pollution and infection may influence how genes involved in bone metabolism are activated. In this process, the environment may trigger chemical marks to be added onto DNA sequences, which ultimately switches specific genes on and off. To investigate whether the pattern of chemical marks in individuals with PDB may be characteristic, Diboun et al. scanned the genetic information of over 200 PDB patients, and compared it to healthy counterparts. Combining genomic analysis and machine learning revealed several chemical signatures that were remarkably different in the DNA of PDB individuals. These signatures affected sites close to genes involved in bone development, as well as response to mechanical loading and infection. This provides strong evidence that PDB could be, in part, triggered by the environment, as the placement of these marks is highly influenced by external factors. This research sheds light onto the underlying changes that trigger PDB. Future experiments should explore whether it may be possible to use these genetic changes to identify patients before the onset of irreversible and debilitating damage.
    [Abstract] [Full Text] [Related] [New Search]