These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Novel chitosan-ulvan hydrogel reinforcement by cellulose nanocrystals with epidermal growth factor for enhanced wound healing: In vitro and in vivo analysis. Author: Mariia K, Arif M, Shi J, Song F, Chi Z, Liu C. Journal: Int J Biol Macromol; 2021 Jul 31; 183():435-446. PubMed ID: 33932420. Abstract: Several dressing materials can be used efficiently in recent times, both in their natural and synthetic combinations like; microfibers, film, nanofibers, hydrogels, and various drugs. The specific characteristics, such as biocompatibility and providing a favorable environment for wound healing, make many polysaccharides pivotal as wound dressings. Keeping in view the importance of these polysaccharides, we have developed novel chitosan-ulvan hydrogel incorporated by cellulose nanocrystals (CNCs) loading epidermal growth factor (EGF) drug (CS-U-CNC-EGF) by the freeze-dried process. The morphological features of novel hydrogel were perceived by FTIR, XRD, FESEM, and DSC analysis. The incorporation of the nanocrystals content modified the porous microstructure at pore size from 237 ± 59 μm to 53 ± 16 μm, improved mechanical stress curve from 0.57 MPa to 1.2 MPa, thermal and swelling behavior. The novel nanocomposites revealed non-toxic behavior and excellent cell proliferation. Whereas hydrogel showed sustained release of the epidermal growth factor (EGF), thereby enhancing EGF delivery at the wound site for 15 days from a 100% wound contraction treated group. Moreover, the controlled release of EGF from CS-U-CNC-EGF hydrogels showed significantly faster-wound healing efficiency concerning considerably faster granulations tissue formation and collagen deposition. The study's results point to possible future applications of this composite hydrogel in wound healing as a wound dressing material.[Abstract] [Full Text] [Related] [New Search]